# Chapter 3

# 3.10 Relative Velocity

VABV_{AB}

Velocity of A with respect to B

# Chapter 4

Type of Forces: Contact Gravitational Electromagnetic Force

Newton's First Law: Inertial Law

Inertial Reference Frame: reference frame where First Law holds

Accelerating (non-inertial)

Mass: measure of inertial

Second Law: acceleration proportional to net force, inversely proportional to mass

Second Law's origin expression: The rate of change of momentum of an object is equal to the net force applied to it.

Third Law: F_{AB} = -F_

Dynamics in Non-inertial Frame: apply fictitious or pseudo forces

# Chapter 10

# Basic concept

rigid body: 刚体 object with a definite shape that does not change

motion of a rigid body: translation of center of mass + rotation relative to center of mass

angular velocity: ω\omega 方向遵循右手法则

angular acceleration: α\alpha

切向加速度 at=αra_t=\alpha r

法向加速度 an=v2r=ωv=ω2ra_n=\frac{v^2}{r}=\omega v=\omega^2r

# 纯滚动 Rolling without slipping

静摩擦力 接触点静止

v=ωrv=\omega r

# Torque 力矩

τ=FRsinθ\tau=FRsin\theta

lever arm / moment arm: R=RsinθR_{\perp}=Rsin\theta

# Rotational dynamics 转动力学

类比平动

# rotational inertia 转动惯量

also named: moment of inertia

F=maτ=FR=mR2α=IαF=ma\Rightarrow \tau=FR=mR^2\alpha=I\alpha

取决于总质量与质量的分布

对于同一轴的转动惯量可以叠加 superimposed

# 常见几何形状的转动惯量

长细棒:I=13ML2I=\frac{1}{3}ML^2(绕端点)I=112ML2I=\frac{1}{12}ML^2(绕中点)

矩形薄板:I=112M(a2+b2)I=\frac{1}{12}M(a^2+b^2)

球:I=25MR2I=\frac{2}{5}MR^2

薄球壳:I=23MR2I=\frac{2}{3}MR^2

圆盘 / 圆柱:I=12MR2I=\frac{1}{2}MR^2

# 测量转动惯量的方法

  1. 积分(对于规则形状)
  2. 实验

# parallel-axis theorem 平行轴定理

I=Ic+Mh2I=I_c + Mh^2

IcI_c 转轴过质心的转动惯量

II 转轴平行于IcI_c 的转轴

hh 两条轴间的距离

# perpendicular-axis theorem 垂直轴定理

适用条件:薄片

Iz=Ix+IyI_z=I_x+I_y Ix,IyI_x,I_y 为两条薄片内互相垂直的轴的转动惯量 IzI_z 为垂直于薄片过前两条轴交点的轴的转动惯量

# Angular Momentum 角动量

L=IωL=I\omega

\Sigma \tau=I\alpha=\frac{dL}

# 角动量守恒

Στ=0\Sigma \tau=0

# Rotational Kinetic Energy 转动动能

K=Σ12mivi2=Σ12mi(ωri)2=Σ12miri2ω2=12Iω2K=\Sigma\frac{1}{2}m_iv^2_{i}=\Sigma\frac{1}{2}m_i(\omega r_i)^2=\Sigma\frac{1}{2}m_ir_i^2\omega^2=\frac{1}{2}I\omega^2

# 功 - 动能关系

dW=τdθdW=\tau d\theta

W=12Iωf212Iωi2=ΔKW=\frac{1}{2}I\omega_f^2-\frac{1}{2}I\omega_i^2=\Delta K

P=τωP=\tau \omega

# 滚动

法一 分解为 平动与转动

法二 VP=0V_P=0 P 点可以被视作瞬时的轴,此时运动为纯转动(无平动)

围绕 P 点转动的动能:K=12IPω2K=\frac{1}{2}I_P\omega^2

平行轴定理:IP=ICM+MR2I_P=I_{CM}+MR^2

K=12ICMω2+12MVCM2\Rightarrow K=\frac{1}{2}I_{CM}\omega^2+\frac{1}{2}MV_{CM}^2(两部分 围绕质心转动的动能 + 质心平动的动能)

(CM->center of mass)

# Rolling smoothly

纯滚动,无滑动(无摩擦力做功产生热能)

v=ωRv=\omega R 等关系式适用

# Chapter 12

# Oscillatory motion

# Simple Harmonic Motion

# Definition

F=kxF=-kx

Magnitude: The force acting on an object is proportional to the position of the object relative to some equilibrium position

Direction: Pointing to the equilibrium position

# Formula derivation

F=ma=md2xdt2=kxF=ma=m\frac{d^2x}{dt^2}=-kx

let ω=smd2xdt2+ω2x=0\omega=\sqrt{\frac{s}{m}}\Rightarrow \frac{d^2x}{dt^2}+\omega^2x=0 Differential Equation of SHM

Solving: x(t)=Ae^

# Physical quantity

x=Acos(ωt+ϕ)x=Acos(\omega t+\phi)

v=Aωsin(ωt+ϕ)v=-A\omega sin(\omega t+\phi) let vm=Aωv_m=A\omega

a=Aω2cos(ωt+ϕ)a=-A\omega^2cos(\omega t+\phi) let am=Aω2a_m=A\omega^2

# Features

Period

Frequency

Angular Frequency

Phase difference: Δϕ=ϕ2ϕ1\Delta\phi=\phi_2-\phi_1

same phase versus opposite phase

Simple harmonic motion can be viewed as a projection of uniform circular motion on one dimension

# Simple Pendulum

# definition

Along the arc, F=mgsinθF=-mgsin\theta

When θ\theta is small (θ<15°\theta<15\degree), F \approx -mg\theta=-mg\frac{x}

\omega=\frac{g}

# Physical Pendulum 复摆

# definition

A pendulum consisting of an actual object that is allowed to rotate freely around a horizontal axis.

Difference from Simple Pendulum:

  • Simple pendulum typically consists of a weight suspended from a fixed point by a rod or string
  • Physical Pendulum is a more complex system

# Formula derivation

τ=Fghsinθ\tau=-F_ghsin\theta when θ\theta is small, τFghθ=Iα\tau \approx -F_gh\theta=I\alpha

let ω2=FghId2θdt2+ω2θ=0\omega^2=\frac{F_gh}{I}\Rightarrow\frac{d^2\theta}{dt^2}+\omega^2\theta=0

# Terminology

inertial 惯性

net force 净力,合力

uniform motion 匀速运动

free-body diagram 受力图